Copyright (©2019 The Institute of Electronics,
Information and Communication Engineers

SCIS 2019 2019 Symposium on
Cryptography and Information Security
Shiga, Japan, Jan. 22 - 25, 2019
The Institute of Electronics,
Information and Communication Engineers

Adding Authenticity into Tree-based Group Key Agreement
by Public Ledger

Seongho Han* Rakyong Choi' Kwangjo Kim**

Abstract: With the development of communication technologies and embedded devices, the im-
portance of group communication among various parties is growing. Group key agreement (GKA) is
playing an important role in sharing critical information in a group. GKA protocol is divided into four
categories: tree-based, star-based, link-based, and ring-based. Tree-based GKA has greater flexibility
in membership management and is easier to achieve decentralization than other GKA protocols. Tree-
based GKA protocols, which are based on Diffie-Hellman Key Exchange (DHKE), become vulnerable
to active attacks since DHKE does not check the identity of the user. To solve the problem, authen-
ticated key exchange (AKE) protocols were suggested. Most AKE papers solve the authentication
problem based on an existence of trusted third party (TTP). However, relying on TTP has a risk of
a single point-of-failure which paralyzes the protocols. In this paper, we suggest two protocols to add
authenticity into a typical tree-based GKA protocol TGDH by public ledger: PLAKE and dPLAKE.
PLAKE uses Proof of Work (PoW)-based public ledger and dAPLAKE uses Delegated Proof of Stake

(DPoS)-based public ledger not to depend on TTP for authentication. We discuss the security of

PLAKE and dPLAKE.

Keywords:
Stake

1 Introduction

1.1 Motivation

Key exchange protocol over an insecure network be-
comes necessary to establish a secure channel that pre-
vents leak of information after Diffie and Hellman [1]
proposed the breakthrough on key exchange protocol
using public key cryptosystem. Key exchange proto-
col between two parties shares common secret key to
secure communication. If we need a communication
channel between multiple parties, we need to share the
common key among these multiple parties.

The importance of sharing common secret key among
multiple parties is growing with the development of
communication technologies. A number of multi-party
key exchange protocols [2, 3, 4, 5] have been proposed
to establish a common secret key among multiple par-
ties. Group key agreement (GKA) protocol is a kind of
multi-party key exchange protocols in which a shared
secret is derived from group members. Each group
member contributes to deriving a shared secret. Every
group member has to interact in order to compute the
group key and no entity can predetermine the resulting
value. GKA protocol does not require the existence of
secure channels between its participants since no secure
transfer takes place during processing.

* Graduate School of Information Security, KAIST. 291,
Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141.
{hansh09, kkj}Qkaist.ac.kr)

T School of Computing, KAIST. 291, Dachak-ro, Yuseong-gu,
Daejeon, South Korea 34141. {thepride, kkj}@Qkaist.ac.kr

Tree-based Group Key Agreement, Public Ledger, Proof of Work, Delegated Proof of

GKA protocol is divided into four categories: tree-
based [3], star-based [2], link-based [4], and ring-based
[5]. Tree-based GKA has greater flexibility in mem-
bership management and is easier to achieve decentral-
ization than other GKA protocols. Tree-based Group
Diffie-Hellman (TGDH) [3] is a typical tree-based GKA
protocol.

Tree-based GKA protocols depend on Diffie-Hellman
key exchange (DHKE). However, DHKE was known to
be secure only for passive attackers. DHKE cannot
prevent any active attack such as man-in-the-middle
(MitM) attack or impersonation attack. This was caused
by the fact that DHKE does not check the identity dur-
ing key exchange. Researchers then proposed authen-
ticated key exchange (AKE) which includes authenti-
cation in two-party key exchange. Authentication was
also introduced in a group key agreement to prevent
active attackers.

Most of the previous AKE protocols such as YAK
[6], MQV [7], HMQV [8], SIG-DH [9], and NAXOS
[10] solve the authentication problem relying on trusted
third party (TTP). AKE protocols relying on TTP suc-
cessfully perform tasks that are required for authenti-
cation. However, TTP has a risk of a single point-
of-failure. If a single point-of-failure takes place, any
party in AKE protocol cannot communicate with other
parties at all.

As active research on public ledger has been con-
ducted, decentralized models are attracting attention
in diverse fields. Problems from dependence on a cen-
tral authority can be solved by public ledger. Thus

authentication can be achieved via public ledger.

In this paper, we suggest Public Ledger based Au-
thenticated group Key Establishment (PLAKE) and
its delegated variant (dIPLAKE). Two protocols add
authenticity into tree-based GKA TGDH using public
ledger. PLAKE uses Proof of Work (PoW)-based pub-
lic ledger and dPLAKE uses Delegated Proof of Stake
(DPoS)-based public ledger for authentication to re-
move the dependency of trusted third party. We dis-
cuss the security of PLAKE and dPLAKE.

1.2 Outline of the Paper

The rest of this paper is structured as follows: First,
we describe public ledger, PoW, and DPoS in Section
2. Section 3 introduces previous work on group key
agreement and authenticated key exchange over pub-
lic ledger. We propose authenticated TGDH protocols
PLAKE and dPLAKE over public ledger in Section 4.
In Section 5, we give a security analysis of PLAKE
and dPLAKE. We provide a discussion on PoW-based
and DPoS-based public ledger in Section 6, and make
a conclusion in Section 7.

2 Background
2.1 Public Ledger

Public ledger, which is also known as blockchain, is
a linked-data structure that connects each block made
up of transactions as shown in Fig. 1. Public ledger
technology emerged with the introduction of Bitcoin
[11]. Public ledger provides data forgery prevention
and distribution of stored data.

Data Forgery Prevention: Bitcoin uses SHA-256
hash function to ensure the integrity of the previous
block. Every data from the previous block is converted
into a hash value which is referred to by the most re-
cently added block. This structure makes data forgery
infeasible because the link between blocks could be bro-
ken if someone changes previous data.

Distribution of Stored Data: Data stored in each
node should be synchronized. If data is stored in a
distributed way, the globally identical database could
not be naturally maintained. The consensus algorithm
is a way to share the same database among nodes in
the network.

Each block contains various kinds of data. We can
publicize any information in the public ledger by adding

the information needed for authentication into the block.

2.2 Proof of Work

There are several consensus algorithms to achieve de-
centralization. Proof of Work (PoW), Proof of Stake
(PoS), and Delegated Proof of Stake (DPoS) are typ-
ical examples of a consensus algorithm. PoW, which
is adopted as a consensus algorithm in Bitcoin, is the
most prominent algorithm. Nodes have to solve the
hash puzzle to prove their work under PoW algorithm.
The hash puzzle on Bitcoin is as follows:

H(H(r||nonce)) < target (1)

Block Height 277316

Header Hash:
0000000000000001b6b9a13b095€96db
41c42928b97ef2d944a9b31b2cc7bdc4

1 Previous Block Header Hash:
0000000000000002a7bbd252417c0374
c55261021e8a9ca74442b01284f0569

Timestamp: 2013-12-27 23:11:54
Difficulty: 1180923195.26
Nonce: 924591752

Merkle Root: 91c008<26€50763e9f548bb8b2
1632373573577effbc55502¢5 ebdccTcf2e

D Mmoo >mTI

Transactions I

Block Height 277315

Header Hash:
0000000000000002a7bbd25a417c0374
€¢55261021e8a9ca74442b01284f0569

-

1 Previous Block Header Hash: '
00000000000000027¢7ba6fe7bad39fa :
f3b5a83daed765f05f7d1b71a1632249 1
Timestamp: 2013-12-27 22:57:18 :
Difficulty: 1180923195.26 :
Nonce: 4215469401 :
Merkle Root: 5e049f4030e0ab2debb92378f5 :
3c0a6e09548aea083f3ab25e1d94ea1155e29d 1
L]

Transactions I

Block Height 277314

Header Hash:
00000000000000027¢7baéfe7bad39fa
f3b5a83daed765f05f7d1b71a1632249

Previous Block Header Hash:
00000000000000038388d97cc6f2c1d
fe116¢5e879330232f3bff1c645920bdf

i 1
))
))
))
))
! Timestamp: 2013-12-27 22:55:40 !
! Difficulty: 1180923195.26 {
! Nonce: 3797028665 !

:

j

: Merkle Root: 02327049330225d4d17€53€79f
1 478¢bb79¢53a509679b1d8a1505¢5697afh326

I Transactions I

Figure 1: The structure of public ledger [12]

H denotes SHA-256 hash function. Nodes have to
find nonce. r and target are fixed until Eq. (1) is
solved. Nodes change nonce value when nonce does
not satisfy Eq. (1). The puzzle is solved once node
finds nonce that satisfies Eq. (1).

The hash puzzle is easy to check whether the solu-
tion is correct, but hard to find the solution. As the
difficulty of puzzle increases, so does the time required
to solve the puzzle. Bitcoin network automatically ad-
justs the difficulty so that the puzzle is solved every
10 minutes. In PLAKE, the difficulty is different for
existing group members and a joining member.

2.3 Delegated Proof of Stake

Nodes select delegates through a continuous approval
voting system in DPoS as we can see in Fig. 2. Any
node can be a candidate for a delegate and be chosen
as a delegate if a node gets a certain level of votes. The
roles that delegates should perform are as follows:

1) Block Production: A delegate should produce
blocks according to protocol. The number of blocks
that a delegate produces depends on protocol.
For example, a delegate on EOS [13] produces 6
blocks during one round. In dPLAKE, each del-
egate will produce 10 blocks during one round.

2) Block Validation: A delegate should validate
blocks generated by other delegates. If the block
has invalid data, delegates must reject the block
for the security of public ledger.

3) Block Finalization: Blocks are finalized by
an agreement of two-thirds of the delegates. If
blocks are finalized, we cannot reverse the public
ledger before the last finalized block.

The number of delegates depends on the design of
protocol. EOS [13] has 21 delegates and Lisk [14] has
101 delegates. Our protocol has 3 delegates.

Anyone who holds the
1 blockchain base currency can

vote for a delegate

The candidate with the most votes
2 gets to become a delegate,
validating transactions and

collecting the rewards for doing so

o
mi_ e
b @ e o0¢

Figure 2: Delegated Proof of Stake [14]

3 Previous Work
3.1 Group Key Agreement

Group key agreement protocol is a kind of key agree-
ment protocols that allow a group of users communi-
cating over an insecure network to establish a shared
secret key. GKA can be applicable to any secure group
communications such as secure group chatting. Amir
et al. [15] evaluate the performance of five most promi-
nent group key agreement protocols: TGDH [3], GDH
[16], CKD [17], STR [18], and BD [5]. Amir et al. [15]
show that TGDH has better performance than other
protocols in both LAN and WAN settings. Thus we
consider TGDH as group key agreement protocol for
PLAKE and dPLAKE protocols. Any entities cannot
have higher authority in TGDH since all users are con-
sidered leaf nodes.

3.2 Authenticated Key Exchange over Public
Ledger

Authenticated key exchange protocol relying on the
root of trust requires TTP for authentication. Interest
in blockchain and distributed ledger technology has in-
creased enormously after Satoshi presented Bitcoin in

2008 [11]. Then a protocol using public ledger to de-
centralize the trust has also been considered in AKE
protocols. Yao et al. [19, 20] propose AKE protocol
between simplified payment verifiable nodes through a
pre-shared secret. Pre-shared secrets are used in Bit-
coin transactions to provide authentication. They use
OP_RETURN code in Bitcoin script language to con-
tain pre-shared secret in transaction. In two papers
[19, 20], AKE is successfully implemented through the
existing Bitcoin network. In contrast to Yao et al.’s
protocol, we do not utilize the existing Bitcoin network.
We use our own consensus algorithms for authentica-
tion.

Bui et al. [21] propose AKE protocols with public
ledger. They construct AKE from proving the exis-
tence of event E with context and time. They use nat-
ural context including application identifier or out-of-
band context which is shared through outside channels
for context. In their paper, the authors prove that both
a protocol based on natural context and one based on
out-of-band context could defend MitM attack. They
prove that it is possible to defend impersonation attack
for a protocol based on out-of-band context. However,
protocol based on natural context cannot prevent im-
personation attack. To prevent denial-of-service (DoS)
attack that intentionally generates a spam event, they
propose to use private ledger for both protocols, but us-
ing private ledger contradicts their assumptions. Our
protocols successfully prevent DoS attack since PLAKE
uses PoW that is designed to prevent DoS attack and
only delegates have the authority to authenticate par-
ticipants in dPLAKE.

McCorry et al. [22] introduce Diffie-Hellman-over-
Bitcoin which is non-interactive and YAK-over-Bitcoin
which is interactive for post-transaction management.
YAK-over-Bitcoin is based on YAK protocol proposed
by Hao et al. [6]. Both protocols provide Bitcoin
address authentication and transaction authentication.
McCorry et al. prove private key security and ses-
sion key security of Diffie-Hellman-over-Bitcoin proto-
col and YAK-over-Bitcoin protocol based on the se-
curity proof of Bellare’s work [23]. In addition, they
prove that YAK-over-Bitcoin provides perfect forward
secrecy. While McCorry et al. use a public key in-
frastructure in their protocol, our approaches use hash
puzzle and one-way authentication.

4 Adding Authenticity into TGDH by
Public Ledger

We design two authenticated TGDH protocols using
public ledger: PLAKE and dPLAKE. We use public
ledger to authenticate a new member and store the
list of authorized group members that perform group
key agreement. Both PLAKE and dPLAKE build an
authenticated group, record authenticated group mem-
bers in the public ledger, and perform group key agree-
ment based on public ledger. One block corresponds to
one session.

PLAKE uses a PoW algorithm and dPLAKE uses

Figure 3: The structure of TGDH protocol [3]

a DPoS algorithm for authentication. Two protocols
use TGDH as group key agreement. Fig. 3 shows the
structure of TGDH protocol. M; denotes a group mem-
ber, N denotes the number of total group member, [
denotes the level, and h denotes the height of a tree. As
shown in Fig. 3, each member becomes a leaf node and
contributes to establishing a group key. TGDH needs a
special node called a sponsor that calculates the inter-
mediate key that is required to establish a group key
and broadcasts intermediate keys. In our protocols, a
sponsor is required for the authentication process.

We describe each protocol in Section 4.1 and 4.2 in
detail.

4.1 Detailed Description of PLAKE

4.1.1 Authentication over PoW-based Public
Ledger

PLAKE uses PoW-based public ledger. Our PoW
algorithm is different from PoW algorithm of Bitcoin.
In Bitcoin, the person who solves a hash puzzle first
has the authority to create a block. In PLAKE, the
sponsor has the authority to generate a block. Thus
block generation is not competitive in PLAKE.

PLAKE performs Join, Leave, Merge, and Key Re-
fresh algorithms. PLAKE expels a malicious node if it
exists.

The following is a detailed description of each algo-
rithm:

Join

A joining member should be recorded on the block to
participate in group key agreement. Node that was the
sponsor in the last session of TGDH generates a new
block. The sponsor gives a hash puzzle that can be
solved with an average of 10 minutes to existing group
members. Contrary to group members, the sponsor
gives a joining member three puzzles that take 1 hour
on average for each. It is noted that the sponsor does
not give three puzzles to a new member at once. If a
new member solves the first puzzle, then the sponsor
gives the second puzzle. If a new member solves the
second puzzle, then the sponsor gives the third puzzle
to a new member. The reason for not giving the puzzle
to new members at the same time is to prevent parallel
operations to increase their workload.

The reason for differentiating puzzle difficulty is that
each node has a different level of trust. As existing
members have already agreed group keys safely, there is
an expectation that they will perform group key agree-
ment safely in the future. On the other hand, a join-
ing member has a risk of being the attacker, so a new
member should try to prove that he/she is willing to
participate in group key agreement despite the penalty
on solving a puzzle. The difficulty of solving puzzles
prevents low-cost attacks.

After solving the puzzles, the sponsor aggregates the
puzzles and answers that each member gives to the
sponsor, as shown in Fig. 4. The reason the sponsor
records the puzzles and answers is to leave the evidence
that calculations are done well at a certain time. As
shown in Fig. 5, the sponsor creates a block that con-
tains the hash value of the block header, the hash value
of the previous block header, time-stamp, nonce, a list
of group members, current operation such as Join or
Leave, and puzzles and nonces given to group members.
Nonce is required to create a new block for forcing the
sponsor to solve a puzzle that takes an average of one
hour. This is to prevent malicious sponsors or external
intruders from generating false blocks at low cost.

Once the block is created, Join protocol of TGDH
group key agreement is performed among the group
members recorded on the block.

Leave

Leave is the process of leaving an existing group mem-
ber. The remaining group members must be recorded
on the block to perform group key agreement. Block
creation is performed by the sponsor node in the last
TGDH group key agreement. When the sponsor leaves,
a block creator is designated for a random node. The
sponsor gives existing group members puzzles that are
solved within 10 minutes on average. The sponsor
records the solved puzzles and answers, solves the given
puzzle which takes an hour on average, and then cre-
ates a block containing the information in Fig. 5. The
recorded members perform Leave protocol of TGDH
group key agreement after the block is created.

Partition

Partition is the process of leaving multiple group mem-
bers at once. That is, Partition is a repeated Leave op-
eration. The rest of the group members are recorded
on the block for group key agreement. Block creation is
performed by the sponsor node in the previous TGDH
group key agreement. If the sponsor leaves, a randomly
chosen node is designated as the block creator as Leave.
The subsequent process is the same as Leave.

Key Refresh

If group members do not change for a long time, a
new session is not processed and so a group key re-
mains unchanged. The longer the same group key is
maintained, the probability of group key leaking in-
creases. Thus Key Refresh is performed to periodically
change the group key. The group key is refreshed when

Block i

Block Header i

Session

Block i+1

Block Header i+1

Block i+2

Block Header i+2

(GKE)

~ (p3) (7

Session 1+1 Session 1+2
(GKE) (GKE)
i \.I o ‘
_ _
(p1) (p2) (P3) (pa4) (p1) (p2)

Authentication with Proof-of-Work

solution of
P-Z\]' —hash PUZe o1 iofi of
N e ____hash puzzle
(P3)

{P1)-

solution of hash puzzle
for a joining member

(p4)

Figure 4: PLAKE protocol. Members with red color indicate delegates who play the role of sponsor in TGDH

Block Header Hash #1 N Block Header Hash #2 \ Block Header Hash #3 \ Block Header Hash #4

\ \ \
\ \ \

N
Previous Block Header 4

A\ \
Y Previous Block Header 2 | | Previous Block Header 3

Timestamp 1 Timestamp 2 Timestamp 3 Timestamp 4

Nonce 1 Nonce 2 Nonce 3 Nonce 4

Group Members
in Session 1

Group Members
in Session 2

Group Members
in Session 3

Group Members
in Session 4

Join Partition Leave Key Refresh

Puzzles and Nonces 1 Puzzles and Nonces 2 Puzzles and Nonces 3 Puzzles and Nonces 4

Figure 5: Block structure of public ledger in PLAKE

time-stamp of the latest block indicates one day be-
fore. If a new block is created due to Join or Leave,
the deadline for key refreshment is reset. As no group
member changes for Key Refresh, the block is created
based on existing group members. The block generator
is randomly chosen except for the latest block creator.

Expulsion of Malicious Node

If a malicious node exists in an authenticated group,
the malicious node should be removed from the group
for secure communication. The sponsor node will not
give a hash puzzle to a malicious node for the next
block generation. If the assigned sponsor turns out to
be a malicious node, then nodes will select other nodes
as a sponsor. Then a new sponsor will give hash puz-
zles to group members except a malicious node. Thus
a malicious node is expelled by being omitted on the
block records.

4.1.2 Group Key Agreement

While TGDH protocol includes Join, Leave, Merge
and Partition protocol, Our GKA protocol only per-

forms Join, Leave, and Partition. In the case of Join op-
eration, if the new member is authenticated and added
to a list of group members, the same process as Join
algorithm of TGDH is performed. In the case of Leave
and Partition, the same process as Leave and Partition
algorithms of TGDH is performed. Key Refresh process
is also identical to Key Refresh of TGDH. After Key Re-
fresh, the node who is responsible for block producing
leaves the role of the sponsor to arbitrarily selected
nodes except itself.

4.2 Detailed Description of dPLAKE

4.2.1 Authentication over DPoS-based Public
Ledger

We use DPoS-based public ledger in dPLAKE. Only
delegates can generate a new block and process a new
session under DPoS algorithm. As a delegate has strong
authority, a delegate can serve as TTP. Thus a delegate
easily and efficiently performs one-way authentication
with a joining member. Fig. 6 shows that a delegate
performs one-way authentication with a new member.
However, we cannot find an adequate one-way authen-
tication protocol, so it remains an open question.

We elect three delegates for each round via the voting
process. Three most voted candidates are delegates.
Delegates do not change until the end of the round. In
case of a delegate having abnormal behaviors such as
network failure, we have candidate delegates who have
positions from the 4th to the 9th place in voting.

One round consists of 30 sessions if dAPLAKE works
well without erroneous situations. If a malicious node
corrupt sessions, a new round will start. Voting is ex-
ecuted whenever a new round begins. Three delegates
generate blocks in turn. We call a delegate who is
responsible for block production as a block producer.
The order of block production is randomly assigned.

Block i

Block Header i

Block i+1

Block Header i+1

Block i+2

Block Header i+2

Session | Session i+1 Session i+2
(GKE) (GKE) (GKE)
N ‘ \’J \"
= - =
(P3) (pa)
(P1) (P2) (p1) (p2) (P3) (r4) (P1) (p2)

L P

| P4

O;e—Way Authenticatic;n

Figure 6: dPLAKE protocol. Members with red color indicate delegates who play the role of sponsor in TGDH

Block Header Hash #1 N

X

Block Header Hash #2

K
A\

\

Block Header Hash #3

A
\

Block Header Hash #4

\
A\

\ e
Previous Block Header 2

\

\
| Previous Block Header 3

X
Previous Block Header 4

Timestamp 1

Timestamp 2

Timestamp 3

Timestamp 4

Identity of Delegate 1

Identity of Delegate 2

dentity of Delegate 3

dentity of Delegate 1

Group Members
in Session 1

Group Members
in Session 2

Group Members
in Session 3

Group Members
in Session 4

Join

Leave

Key Refresh

Partition

Figure 7: Block structure of public ledger in dPLAKE

Each delegate generates 10 blocks during one round,
so a total of 30 blocks are generated during one round.

A block generated by a delegate contains the hash of
the block header, the hash value of the previous block
header, time-stamp, the identity of the delegate that
creates the block, a list of group members who share a
common secret, and current operation as shown in Fig.
7. A new block is created when new Join, Leave, or
Partition occurs. Group key agreement occurs whenever
a block is created and perform an operation according
to group member information stored on the block. Also
a block is generated when Key Refresh is performed.
dPLAKE can expel a malicious node as PLAKE.

The following is a detailed description of each algo-
rithm:

Join Protocol

A joining member should execute one-way authen-
tication with the block producer for block production.
If one-way authentication protocol runs correctly, the
block producer adds a joining member to the list of
group members and records the group member infor-
mation on the block. Then a joining member partici-
pates in group key agreement protocol to share a com-
mon secret.

Leave Protocol

Leave protocol indicates the removal of an authenti-
cated group member as PLAKE. The block producer
records the remaining group members except the leav-
ing member on the block. If the block producer leaves
at this session, one of the other delegates performs the
task of a delegate instead of a leaving delegate.

Partition Protocol

Partition protocol indicates that more than one group
member leaves dPLAKE protocol as PLAKE. The block
producer records the remaining group members except
those leaving members on the block. If multiple del-
egates leave the protocol, candidate delegates will re-
place the existing delegates. If all delegates including
candidate delegates leave the protocol, a new round be-
gins with a voting process and the appointed delegate
will continue the protocol by creating a new block.

Key Refresh

Key Refresh process of dPLAKE is identical to that
of PLAKE. The only difference is that we choose other
delegates to produce block in dPLAKE and choose ran-
dom nodes for block production in PLAKE.

Expulsion of Malicious Node

If a malicious node exists in an authenticated group,
the malicious node should be expelled from the group
as PLAKE. If the deported node is not a delegate, the
block producer considers the remaining group members
except for the deported node as a group member, and
then the block producer creates the block based on the
remaining group members. If the deported node is a
delegate, then a new round gets started and the voting
is processed. We can expect that the remaining group
members will not vote for a malicious node. After the
voting process, it is possible to exclude a malicious node
from an authenticated group by creating a block from
the new delegate.

4.2.2 Group Key Agreement

Group key agreement process is almost identical to
PLAKE protocol as we use TGDH for both PLAKE
and dPLAKE. In dPLAKE protocol, the block pro-
ducer plays the role of the sponsor. In the case of
Join operation, if the new member is authenticated and
added to the group during the one-way authentication
protocol, the same process as the Join algorithm of
TGDH is performed. In the case of Leave, Partition,
and Key Refresh, the same process is performed as that
of TGDH. After Key Refresh, the block producer leaves
the role of the sponsor to an arbitrarily selected one of
the remaining two delegates.

5 Security Analysis of (d)PLAKE

We analyze the security of PLAKE and dPLAKE.
We divide two parts for security analysis. The first
part corresponds to authentication over public ledger.
The second part corresponds to group key agreement.

5.1 Security Analysis of Authentication over
Public Ledger

PoW-based Public Ledger

If the session is Leave, Partiton, or Key Fresh, the to-
tal time for authentication takes 1 hour and 10 minutes
on average since nodes should solve a hash puzzle in
PLAKE protocol. If an attacker with a low-cost does
not make an enough effort to join the group, he/she
cannot participate in group key agreement. Thus au-
thentication is guaranteed for low-cost attackers.

However, three hours to solve a puzzle given to a
joining member may not be enough to prevent high-
cost attackers. Therefore, it cannot prevent a high-cost
attacker from authenticating with group members and
corrupting the protocol. If an attacker succeeds in join-
ing an authenticated group, he/she may leak informa-
tion or intentionally create a fork to disturb group key
agreement. In case of leakage of information, as TGDH
provides session key security [3], we can minimize dam-
age and exclude a malicious node. If an attacker creates
a fork, nodes in the group may get confused for a while,
but nodes will not follow the blocks that an attacker
creates.

DPoS-based Public Ledger

The security of Join algorithm of dPLAKE depends
on the one-way authentication protocol. Thus the se-
curity of Join algorithm can be discussed when actual
one-way authentication protocol is determined.

The security of Leave and Partition Protocols is proved
as group members leave the protocol voluntarily and
TGDH provides key independence. However, if a pub-
lic ledger is compromised by a malicious node, confi-
dential information such as shared group key is leaked.
To expel malicious group member and to maintain the
authenticity of information, DPoS-based public ledger
is used to finalize the block. That is, group mem-
bers other than a malicious node can re-establish the
session by reversing the public ledger to the finalized

block. Therefore, we can prevent disturbance by ma-
licious nodes after the finalized block. It remains an
open question if a malicious node leaks the shared in-
formation before the finalized block.

5.2 Security Analysis of TGDH Group Key
Agreement

PLAKE and dPLAKE follow TGDH GKA protocol
as group key agreement. The security of TGDH de-
pends on the difficulty of Decisional Tree group Diffie-
Hellman Problem (DTGDH) which can be reduced to
a two-party Decisional DH problem. Thus the security
of PLAKE and dPLAKE is guaranteed as long as a
two-party Decisional DH problem cannot be solved in
a feasible time.

6 Discussion

Rigorous Security Proof

TGDH has proven to be secure under DTGDH as-
sumption. Yet we do not know new problems caused
by merging public ledger and TGDH protocol. Further
studies should prove the formal security of authenti-
cated TGDH protocol using public ledger.

Problems on PoW-based Public Ledger

The hash puzzle used in Bitcoin has a different speed
of finding solutions depending on the hardware perfor-
mance. Therefore, hash puzzles using memory-hard
PoW such as Scrypt have been proposed so that all
nodes solve puzzles in the same environment [24, 25,
26).

Another problem is that PLAKE cannot be used in
emergency situations because it takes at least one hour
to perform group key agreement and four hours to ac-
cept new members. Further discussion is needed to
solve this problem.

Problems on DPoS-based Public Ledger

DPoS-based public ledger is by definition classified
as a decentralized public ledger. Every node in DPoS-
based public ledger elects delegates who produce blocks
via the voting process. However, DPoS-based public
ledger contains the risk of being centralized since the
authority is concentrated on a small number of dele-
gates. In dPLAKE protocol, as only three delegates
are elected, the risk of centralization is higher than
other DPoS-based public ledgers. Thus, we need to
investigate how well decentralization is achieved via
dPLAKE.

7 Conclusion and Future Work

This paper combines TGDH group key agreement
protocol and authentication protocol over public ledger.
We suggest PLAKE and dPLAKE which are authen-
ticated TGDH protocols using public ledger based on
PoW and DPoS, respectively. We use public ledger
to remove the dependency of TTP for the authentica-
tion process. We analyzed the security of PLAKE and

dPLAKE. To the best of our knowledge, this is the first
work that combines authentication protocol over public
ledger and group key agreement.

Due to some limitations about public ledger, we should
deal with the problems on PoW-based and DPoS-based
public ledger more and find an adequate one-way au-
thentication protocol for dAPLAKE.

On the other hand, TGDH are known as efficient pro-
tocols. Yet how good the efficiency is when TGDH and
public ledger combined have not been dealt with. We
will measure the performance of PLAKE and dPLAKE
in the near future.

Acknowledgement

This work was partly supported by Institute for In-
formation & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT)
(No. 2017-0-00555, Towards Provable-secure Multi-
party Authenticated Key Exchange Protocol based on
Lattices in a Quantum World).

References

[1] W. Diffie and M. Hellman, “New directions in cryp-
tography,” IEEFE transactions on Information Theory,
vol. 22, no. 6, pp. 644-654, 1976.

[2] W. Lang, M. Zhou, and K. She, “Key agreement proto-
col in ad-hoc networks,” in Communication Technology
Proceedings, 2003. ICCT 2003. International Confer-
ence on, vol. 1, pp. 296-301, IEEE, 2003.

[3] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group
key agreement,” ACM Transactions on Information
and System Security (TISSEC), vol. 7, no. 1, pp. 60—
96, 2004.

[4] E. Bresson, O. Chevassut, and D. Pointcheval, “Prov-
ably secure authenticated group diffie-hellman key ex-
change,” ACM Transactions on Information and Sys-
tem Security (TISSEC), vol. 10, no. 3, p. 10, 2007.

[5] M. Burmester and Y. Desmedt, “A secure and efficient
conference key distribution system,” in Workshop on
the Theory and Application of of Cryptographic Tech-
niques, pp. 275286, Springer, 1994.

[6] F. Hao, “On robust key agreement based on public
key authentication,” in International Conference on
Financial Cryptography and Data Security, pp. 383—
390, Springer, 2010.

[7] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Van-
stone, “An efficient protocol for authenticated key
agreement,” Designs, Codes and Cryptography, vol. 28,
no. 2, pp. 119-134, 2003.

[8] H. Krawczyk, “Hmqv: A high-performance se-
cure diffie-hellman protocol,” in Annual International
Cryptology Conference, pp. 546-566, Springer, 2005.

[9] R. Canetti and H. Krawczyk, “Analysis of key-
exchange protocols and their use for building secure
channels,” in International Conference on the The-
ory and Applications of Cryptographic Techniques,
pp. 453-474, Springer, 2001.

[10] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger
security of authenticated key exchange,” in Inter-
national conference on provable security, pp. 1-16,
Springer, 2007.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008.

[12] A. M. Antonopoulos, Mastering Bitcoin: Programming
the open blockchain. ” O’Reilly Media, Inc.”, 2017.

[13] “Eos.” https://github.com/EOSIO/Documentation/
blob/master /TechnicalWhitePaper.md.

[14] “Lisk.” https://lisk.io.

[15] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On
the performance of group key agreement protocols,”
ACM Transactions on Information and System Secu-
rity (TISSEC), vol. 7, no. 3, pp. 457-488, 2004.

[16] M. Steiner, G. Tsudik, and M. Waidner, “Key agree-
ment in dynamic peer groups,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 8,
pp. 769-780, 2000.

[17] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz,
J. Stanton, and G. Tsudik, “Secure group commu-
nication using robust contributory key agreement,”
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 15, no. 5, pp. 468-480, 2004.

[18] Y. Kim, A. Perrig, and G. Tsudik, “Group key agree-
ment efficient in communication,” IEEE transactions
on computers, vol. 53, no. 7, pp. 905-921, 2004.

[19] H. Yao and C. Wang, “A novel blockchain-based au-
thenticated key exchange protocol and its applica-
tions,” in 2018 IEEE Third International Conference
on Data Science in Cyberspace (DSC), pp. 609-614,
IEEE, 2018.

[20] H. Yao, C. Wang, B. Hai, and S. Zhu, “Homomor-
phic hash and blockchain based authentication key ex-
change protocol for strangers,” in 2018 Sizth Interna-
tional Conference on Advanced Cloud and Big Data
(CBD), pp. 243-248, IEEE, 2018.

[21] T. Bui and T. Aura, “Key exchange with the help of a
public ledger,” in Cambridge International Workshop
on Security Protocols, pp. 123-136, Springer, 2017.

[22] P. McCorry, S. F. Shahandashti, D. Clarke, and
F. Hao, “Authenticated key exchange over bitcoin,”
in International Conference on Research in Security
Standardisation, pp. 3—20, Springer, 2015.

[23] M. Bellare, D. Pointcheval, and P. Rogaway, “Au-
thenticated key exchange secure against dictionary at-
tacks,” in International conference on the theory and
applications of cryptographic techniques, pp. 139-155,
Springer, 2000.

[24] A. Biryukov and D. Khovratovich, “Equihash: Asym-

metric proof-of-work based on the generalized birthday
problem,” Ledger, vol. 2, pp. 1-30, 2017.

[25] C. Percival and S. Josefsson, “The scrypt password-
based key derivation function,” tech. rep., 2016.

[26] J. Tromp, “Cuckoo cycle: a memory-hard proof-
of-work system.,” TACR Cryptology ePrint Archive,
vol. 2014, p. 59, 2014.

